Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer.
نویسندگان
چکیده
PURPOSE The RNA interference effect is an alternative to antisense DNA as an experimental method of down-regulating a specific target protein. Although the RNA interference effect, which is mediated by small interfering RNA (siRNA) or micro-RNA, has potential application to human therapy, the hydrodynamic method usually used for rapid administration of oligonucleotides is unsuitable for use in humans. In this study, we have investigated the antitumor activity of a synthetic siRNA, B717, which is sequence specific for the human bcl-2 oncogene, complexed with a novel cationic liposome, LIC-101. EXPERIMENTAL DESIGN In a mouse model of liver metastasis, we administered B717/LIC-101 by bolus intravenous injection, adjusting the rate and volume of administration to what is feasible in human therapy. In a mouse model bearing prostate cancer in which the cells were inoculated under the skin, B717/LIC-101 was administered subcutaneously around the tumor. RESULTS The B717/LIC-101 complex inhibited the expression of bcl-2 protein and the growth of tumor cell lines in vitro in a sequence-specific manner in the concentration range of 3 to 100 nmol/L. Furthermore, the complex had a strong antitumor activity when administered intravenously in the mouse model of liver metastasis. B717 (siRNA) was shown to be delivered to tumor cells in the mouse liver, but only when complexed with LIC-101. The complex also inhibited tumor cell growth in the mouse model bearing prostate cancer. CONCLUSIONS By combining siRNA with our cationic liposome, we overcame the difficulty of administering siRNA to animals in ways that can be applied in human therapy. Although our siRNA/liposome complex is not yet in clinical trials, it is expected to provide a novel siRNA therapy for cancer patients.
منابع مشابه
Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes.
The pharmacokinetics and antitumor activity of pegylated small interfering RNA (siRNA)/cationic liposome complexes were studied after systemic administration to mice. We designed pegylated-lipid carriers for achieving increased plasma concentrations of RNA and hence improved accumulation of RNA in tumors by the enhanced permeability and retention effect. We compared the pharmacokinetics of siRN...
متن کاملPreparation and in-vitro Evaluation of an Antisense-containing Cationic Liposome against Non-small Cell Lung Cancer: a Comparative Preparation Study
The current methods for treatment of cancers are inadequate and more specific methods such as gene therapy are in progress. Among different vehicles, cationic liposomes are frequently used for delivery of genetic material. This investigation aims to prepare and optimize DOTAP cationic liposomes containing an antisense oligonuclotide (AsODN) against protein kinase C alpha in non-small cells lung...
متن کاملPreparation and in-vitro Evaluation of an Antisense-containing Cationic Liposome against Non-small Cell Lung Cancer: a Comparative Preparation Study
The current methods for treatment of cancers are inadequate and more specific methods such as gene therapy are in progress. Among different vehicles, cationic liposomes are frequently used for delivery of genetic material. This investigation aims to prepare and optimize DOTAP cationic liposomes containing an antisense oligonuclotide (AsODN) against protein kinase C alpha in non-small cells lung...
متن کاملEfficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome
A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form st...
متن کاملGalactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA.
We have developed a galactose-modified cationic liposome for delivery of small interfering RNA (siRNA) to the liver. The liposomes were designed to be transported into hepatocytes via the asialoglycoprotein receptor, which recognizes galactose residues. The liposomes contained a novel galactose-modified lipid, 1,2-dioleoyl-sn-glycerol-3-phosphatidyl-N-(1-deoxylactito-1-yl)ethanolamine (GDOPE). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 10 22 شماره
صفحات -
تاریخ انتشار 2004